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PLANE ELASTOSTATIC ANALYSIS OF V-NOTCHED PLATES
by Bernard Gross and Alexander Mendelson

Lewis Research Center

SUMMARY

Solutions are given for several plane elastostatic problems of plates having a v-notch
on one edge, and subjected to a variety of boundary conditions. The effect of the mag-
nitude of the v-notch angle and specimen geometry on stress intensity factors KI and
KII are obtained for unloaded notch surfaces. Examples are given of notch surface dis-
placements for several selected cases. Analytical solutions are formulated but not
computed for the case of a loaded notch surface or one with prescribed boundary surface
displacements.

Notch opening displacements at the plate edge were measured experimentally and the
results obtained were in excellent agreement with the computed results.

INTRODUCTION

Knowledge of the stress distribution in the neighborhood of a singularity, such as at
the tip of a v-notch in a loaded plate is of fundamental importance in evaluating the re-
sistance to quasi-brittle fracture of structural materials. Many different types of spec-
imens have been used in fracture toughness tests. However, for several reasons con-
nected with optimization of specimen size and load requirements (ref. 1) single edge
crack plate specimens loaded in tension or bending are of current interest from the
standpoint of fracture test method development (ref. 2).

An analytical solution for a finite width single edge crack specimen loaded in tension
was given by Gross, Srawley, and Brown (ref. 3), using boundary collocation techniques
applied to an appropriate stress function derived by Brahtz (ref. 4) and Westergaard
(ref. 5) and independently by Williams (refs. 6 and 7). Solutions for other finite width
edge cracked specimens subject to bending or combinations of tension and bending were
subsequently obtained by Gross and Srawley (refs. 8 to 12). The results are in good
agreement with those obtained experimentally (refs. 13 to 15 and unpublished data by
Jones, Bubsey, and Brown of Lewis) and analytically by other methods (refs. 16 to 19),
as shown in detail in reference 19.
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(a) ldeal plane crack. {b) Machined notch.

Figure 1. - In practical specimens the ideal plane crack (a) is simulated by a
machined notch with a fatigue crack extension (b). The dashed lines
represent a sharp, finite-angle notch which just includes the machined
notch and fatigue crack extension.

The specimens recommended by ASTM Committee E-24 for plane strain fracture
toughness tests (ref. 2) have machined notches tipped with fatigue cracks (fig. 1(b)) which
are intended to represent ideal plane cracks (fig. 1(a)). For practical reasons it is de-
sirable to allow considerable latitude in the form of the machined notch; the only impor-
tant consideration is that the crack-tip stress field should not be significantly different
from that of the ideal plane crack which is represented. To establish how much latitude
in crack-notch configuration can be allowed it is sufficient to investigate the stress fields
of pointed v-notches as a function of notch angle. Any crack-notch configuration can be
just bounded by a v-notch of some angle which has its apex at the crack tip (fig. 1(b)).
The deviation of the stress field of that v-notch from the stress field of a zero-angle
notch (plane crack) is an upper bound on the deviation of the crack-notch configuration.
Thus the v-notch angle is useful as a single parameter for characterizing practical
crack-notch configurations in relation to ideal crack-tip stress fields. The present work
is concerned with the analysis of v-notched plates as a function of notch angle.

The first attempt at such an analysis was made in reference 20 for a restricted ge-
ometry, using the collocation procedures of Gross and Srawley (refs. 3 and 8). The pre-
sent analysis gives the general solution over a broad range of geometries and in partic-
ular determines the influence of the notch angle on fracture toughness measurements.

The elastic stress and displacement solution of a homogeneous isotropic rectangular
plate of finite dimensions with a v-notch loaded by either symmetric or antisymmetric
loads is given. The necessary equations for the case of longitudinal shear (mode III) are
developed but no quantitative solution given.



SYMBOLS

The following list contains the commonly used symbols and their definitions. In

general, all symbols are defined when introduced.
th

Ai n coefficients of the stress function series associated with the n~ eigen-

’
value

a,b,h,s,w specimen dimensions as shown in figs. 2 to 4

E modulus of elasticity

G shear modulus

K, KI’ KII stress intensity factor at the notch tip, subscript I, II refers to mode
of notch extension

KC, KIC’ KIIC critical value of the stress intensity factor K, KI’ and KII

M bending moment

P applied load

UL u(p displacements in the radial and tangential directions, respectively

ux,uy,uZ displacements in x, y, and z directions, respectively

« {u/(l + v) for plane stress conditions

v for plane strain conditions
- : th :

An =My + 1§’n n " complex eigenvalue

v Poissons ratio

Oq equivalent stress

002929y Trw,

Trz’ Tz

¥ components of the stress tensor

O oy, 0,5 Txy

7-yz’ Tzx

T P/bh nominal shear stress at x = 0 for the rectangular double canti-
lever beam specimen

X stress function

displacement function



ANALYSIS
The Plane Problem (Modes I and II)

The solution presented in this paper is for a specimen having a zero radius v-notch
on one edge. It applies to a homogeneous isotropic material and is in the class of plane
elastostatic problems of the theory of linear elasticity.

Plates containing a single edge v-notch are analyzed for symmetric loading (mode I)
and antisymmetric loading (mode II). The configurations are shown in figures 2 and 3,

C
Y ———]
A D
i .
Py Y -
2
H i H H W =
Pure tension Pure bending Three point bending
loading loading loading (sfw = 4}
P 7 Figure 3. - Single edge notched plate
B Ly specimen subject to antisymmetric
A loading {mode II), having a thick-
ot ness b.

Double cantilever beam
specimen.

Figure 2. - Mode I specimens having a thickness b.

respectively. Stress function solutions are obtained in two parts: the first satisfying
the homogeneous (zero) loading or displacement along the notch surfaces and the second
satisfying a given load or displacement along the notch surfaces. The most general
solution is obtained by a combination of these parts.

We take the origin of coordinates at the tip of the notch as shown in figures 2 and 3.
Neglecting body forces, the differential equations of the system for both plane stress and
plane strain reduce to the biharmonic equation
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V4X= _3_+}__3_+L_a_ _)_(+l§)_(+.1_a__2(_ =0
8r2 r or r2 a(pz arZ ror r2 a(pz
The components of the stress tensor are
2
O'r = _]_'_ _a_x- + l a_x
r2 a(02 r or
2
o-qp = a_l‘
Brz
2

= —lﬂ_{-Lﬂ(_
T rerade L2809

It is convenient to define a displacement function y(r, ¢) such that

2
V2x= 9% (ry)
or g@

Then the displacements can be written (ref. 7)

3\
2Gur=-a_x+(1—i<)r%
or 2w
¢
2Gu :-18_X+(1- K)I‘zﬂ
r op or
J

Assume a stress function x to be given by
X(I', Q@ A) = Re [XI(ra Q, >\) + XII(r’ QD)]

where R denotes the real part of the bracketed expression, and

XI(r’ @, >t) = er(Ay 90)

(1)

()

(3

(4)

(5)



where

F(x, @) = [al COS A + 29 cos(x - 2)p + ag sin A +ay sin(x - 2)<p] (6)

and where Xg satisfies identically the conditions of zero notch surface boundary loads
with 2, ay, ay, ag, and ay being complex numbers and xn(r,cp) represents a function
determined from the given nonzero boundary load conditions, if any, along the notch sur-

faces.
Assume the displacement function ¢ to be

Y(r, @ m) = Re [‘l’l(r’ @ m) + WH(I" 90)] (7)
where
wI(r, ©,m) = rm(d1 cos mqy + cl2 sin mg) = rmg(go,m) (8)

and m, dl’ and d2 may be complex numbers.
Since X is independent of X1 and 1//1 is independent of sz it follows from equa-
tion (3) that

2
m=x-2 and (-1) 8 =x2p, 2F (9)
2@ 30
and
U )
vzxn S | ST (10)
ardg @
From equation (9) we obtain the relation
\
. -43.4
L=
(r -2)
and r (11)
‘- 4a2
9 =
(-2 j



and it follows that

A-2
. 21:'— 7 [-a4 cos(X - 2)¢ + a, sin(x - 2)‘0:] ¥ (12)

l,l/(I‘,(p,)\) =R

The homogeneous boundary conditions to be satisfied by the stress function Xy are

o o
, =)= , —-—)=0 13
TI'QDI <r 2) ’Trqu <r 2) (13)
o r, ) r, - 2)=0
1\ 2 1 2

From equations (2) and (6) we obtain

and

-2 oF
ey ™ R, [-r" - 1) ;(;] (14)
and
e = R, [r"'zx(x - 1)F] (15)

Satisfying the boundary conditions of equation (13), using equations (14) and (15) leads
to



rcos e cos(» -2) 2% I-Al ”O
2

asina® (A -2)sin(r-2)¢ A, 0
2 2
JL 1 L

> (16)

and

rsin - sin(A - a) ad Aq 0
2 2

rcosaE (A-2cos(r-2) % A, 0
2 2

JL 4 L4 )

where Ai = 2ai. The resulting eigenequations are

sin(A, - l)a = :t(?\n - 1) sin « (17)

where

+ i€ n=1,2,3, ...,

A n

n~n

are the complex eigenvalues.
1t also follows from equation (16) that

~cos(r_ -2) &
n 2
Al,n B o A2,n
cos A —
2
-sin(x_ -2) <
n 2
A3,n - A4,n
. o
sin )\n hadk
2

The solution for the infinite number of complex roots of these eigenequations was
obtained by the Newton-Raphson technique and are tabulated in table I for « = 300°.




TABLE I. - EIGENVALUES OBTAINED FROM EQUATION (17) FOR a = 300°

n nn

. 5122214
4.8814875

7| 8.4874029
10112.0902400
13]15.6919459
16]19. 2930992
19122. 8939369
22126.4945767
25(30.0950830
28(33.6954947
31|37.2958369
34140. 8961263
3744. 4963746
40)48.0965900

Eigenvalues 7 + i{ for the even stress function

§I'l

. 3604963
.4886817
. 5641655
.6180209
.6599493
. 6942958
. 7233902
. 7486291
. 71709166
. 7908716
. 8089365
. 8254388
. 8406276

n

11
14
17
20
23
26
29
32
35
38
41

n

.4710279
.0840842
. 6885409
.2908942
. 8923762
. 4934061
.0941684
. 6947579
. 2952292
. 8956156
. 4959383
.0962129
. 6964498
.2966561

Sn n n gn
0.1418529 || 3| 3.6776151 | 0.2849014
.A4136445|| 6| 7.2859663 | .4548960
.5173204 || 9| 10. 8894680 . 5421866
.5838618|[12 | 14.4914565 | .6017071
.6330462 || 15| 18.0927579 | .6469723
.6720988 |18 | 21.6936841 . 6835201
.7044951 1121 [ 25.2943809 . 7141765
.7321794 || 24 | 28.8949263 | . 7405815
.7563511 {[27 | 32.4953661 . 1637728
L7T78027 {30 | 37.2958369 | . 7908716
.7970851 || 33 [ 39.6960349 | .8031028
. 8145973 (136 | 43.2962956 . 8200950
. 8306372 (|39 | 46.8965216 . 8356977
. 8454334 |42 | 50.4967189 . 8501212

Tables for other values of @ are given in reference 19.

The stress function x can be written separating the even functions and the odd

functions as follows:

Xq(r @ %) = qEyEN * XODD

~

where
o0 An
XIEVEN =Z r [Al,n cos )\n(p + A2, n cos(xn - 2)@]
n=1
and
Y

XoDD ~
n=1

n . .
r [AB,n sin ¢ + A4,n sin(x - Z)gp]

Similarly equation (8) is written as

¥1 = ¥iEvEN * Y10DD

J

(18)



where

b N
A -2
_ Ir
YEVEN =~ Agn ) cos(r, - 2)¢

n

n=1

and r (19)
A -2
Y10DD = 4 2,n (5 sin(a, - 2)¢

n

n=1

Since the stresses and displacements are real, they are associated with the real parts of

the stress function X1 and displacement function Y-
The mode I and II stress and displacement fields are associated with the even and

odd solutions, respectively. The corresponding stress intensity factors KI and KII

are obtained as follows:

~
-7
K;=v2r lim r 1, (r,0)
r-0 ¢
. (20)
; im ¢ 1
Ky = 27 lim r 7_¢(r,0)
| T
r-0 J

The stress intensity factors are thus defined to cancel the singularity. As originally used
by Irwin (ref. 21), the stress intensity factor K is always associated with a zero notch
angle {(crack). This leads to a square root singularity, that is, n = 3/2. When the

notch angle is no longer zero (crack) but less than 1800, the singularity occurring at the

notch tip is less than 1/2 (nl > 3/2, as shown in table VIII).
Hence

10



sin UK sin ¢
Ky = V2r 771(771 -1)|-{cos o +

+1{R_A
1+cos771a e2,1

: } (21)
sin e sin @
Ky = V2n (771 -1) (771 -2) + U i—im—-— cos o ReA4, 1
1

where ™ is the real part of AL

The stress function X is now obtained satisfying V4XII = 0 and the appropriate
nonzero notch surface boundary load conditions. For example, if

a —
OQDII (r, _2.-> = 1«:1
a —_
G(pII(r’ - —2—) - kz
a
‘Tr(pn (r, _2—> = k3

r %)=k
Trom\™ "5 )7 "4 )

where kl’ k2, k3, and k4 are constants, we can choose the stress function X1 to be

~

f (22)

-’ ;
Xpp = T (A'II + By sin 2¢ + Cyp cos 20 + DHgo)

And solving for AH’ BII’ CII’ and DII in order to satisfy equation (22) the stress func-

tion Xi1 is determined, and x = X + X1 satisfies all the field equations and boundary
conditions.

It follows from equation (3) and (7) that the displacement function Yq; must be such
that

2
Y = 4AH¢ + 2Dncp

For the limiting case of a crack (¢ = 3600), the previous equations reduce to those
obtained in reference 7.

11
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Figure 4. - Single edge notched plate subjected to longi-
tudinal shear (mode III).

THE LONGITUDINAL SHEAR PROBLEM (MODE III)

For the longitudinal shear problem shown in figure 4, the in plane displacements u,.
and u_are assumed to be zero and the longitudinal displacements u, is a function of
x, y. The notch surfaces are thus constrained to a skew symmetric displacement with
the surfaces moving parallel to one another. This type of specimen is assumed to be
very thick so that all planes far enough removed from the free surfaces behave in the
same way. Superposition of the results of this mode Il of loading with that of modes 1
and II is sufficient to describe the most general case of loading on a specimen having a
v-notch on one edge.

Introducing a stress function x such that

the equilibrium equations are identically satisfied and the compatibility equation becomes

2 2
1M+§>§+ra_>(=v
ra(p2 or arz

25 =0 (23)

Equation (23) can be solved by the standard technique of separation of variables, re-
sulting in

X = I‘K(B1 cos A¢ + By sin Ag)

12



From the boundary conditions along the unloaded notch surfaces, that is,

b o
T :_=0,(p=i_.
¥z ar 2

and the fact that x must be an even function of ¢, it follows that

A T
cos ZZ=0, »_ =(2m - 1) —
2 m o

Hence

o0
X = E r(2m-1)n/a By-1 cos(2m - 1) Haﬂ (24)
m=1

where values of m < 1 have been excluded in order that the displacements remain finite.
While the above solution treats the notch surface as being free (i.e., X = xl), the prob-
lem of having known shear stresses along the notch surface may be analyzed as well.

The stress function x is considered to be a combination of two functions x = Xg + Xqq
where X satisfies the homogeneous boundary conditions along the notch surface and XI1
satisfies the boundary load conditions along the notch surface. For example, to obtain
the complete stress function solution assuming a constant shear stress T(pZH along the
notch surface, let

X = CHr cos @

which satisfies the compatibility equation

To determine CII we have

o
OXyr [T —
H( 2)_

=C,LCO8 —-=7T
or I

@zIl

MR

13



thus

and X = Xp + X1 satisfies all the required field equations and boundary conditions.

BOUNDARY COLLOCATION SOLUTION

The previous solutions satisfy exactly the boundary conditions along the notch sur-
faces. To satisfy the boundary conditions along the rest of the boundary, one must find
appropriate values for the unknown coefficients appearing in the series obtained. This
can be done by truncating the series as expressed in equation (18) and determining the
unknown constants such that the stress function and stress function derivative satisfy the
boundary conditions at a finite number m, of selected boundary stations. In doing this,
a set of 2m simultaneous algebraic equations is obtained and the first 2m coefficients
of the stress function series are determined. The truncated stress function series thus
obtained is considered to be an accurate representation of the actual stress function when
further increase in the number of boundary stations produce no significant change in the
first coefficient of the stress function series which represents the dominant term in the
vicinity of the crack tip. This boundary collocation technique is described in detail in
references 3, 8 to 12, and 19.

For included vertex angles « above 3000, the above method worked very well.
However, as & is decreased below 300° the first coefficient of the stress function os-
cillated about some value, bracketing this value without actually converging. This dif-
ficulty was overcome in a manner similar to that used by Hulbert (ref. 22). More bound-
ary stations were chosen than unknown coefficients leading to an overdetermined system,
and the resulting set of simultaneous equations was satisfied in the least squares sense.
All the results reported herein are based on the solution to such overdetermined systems.
For included angles greater than 300° the results of overdetermined systems were the
same as for the ordinary system consisting of an equal number of equations and unknowns.
Those early results referred to in references 3, and 8 to 12 did not use overdetermined
systems as this was unnecessary. In solving the resulting set of n simultaneous equa-
tions in n unknowns, a Gauss-Jordon pivotal condensation routine was used.

Since the most important quantity to be determined is the stress intensity factor K,
preliminary trials were made to determine the number of equations necessary for eval-
uating K with sufficient accuracy for the case of pure tension, pure bending, and three-

14



TABLE II.

- DIMENSIONLESS STRESS INTENSITY

FACTORS FOR SINGLE-EDGE NOTCHED SPECIMEN

Included Notch length to plate width ratio, a/w
vertex,
angle. 0.2 0.3 0.4 0.5 0.6 0.7

a,

deg

ﬂl'l
KIbw
Pure tension; —-
P
360 1.085]|1.614 (2.369(3.539 | 5.537 9.422
350 1.085] 1.613[2.369 | 3.541|5.538| 9.426
340 1.087|1.618|2.374(3.549|5.549( 9.445
330 1.097]1.6302.389| 3.569|5.579 | 9.491
300 1.169]1.72412.520 | 3.756 | 5.859 | 9.979
270 1.366]1.98712.888(4.297|6.736|11.515
240 1.804| 2.595]3.766 | 5.630 | 8.934 { 15. 551
_ KIanl !
Pure bending; -
6M
360 0.837(1.093}1.414|1.877|2.629| 4.041
350 .836(1.093|1.414|1.8762.627| 4.044
340 .839(1.095]1.416|1.8782.632 ! 4.048
330 .84411.100(1.422]1.885|2.640| 4.062
300 .895[ 1.155(1.484(1.965(2.752| 4.250
270 1.034]1.314(1.678|2.218( 3.139| 4.873
240 1.346| 1.680}2.1462.860|4.112| 6.532
) ) KIbwn1 !
Three-point loading; .~ -
6P

360 0.77711.013|1.318|1.767}2.504| 3.893
350 L7761 1.01211.319|1.766 | 2.504 ] 3.898
340 L7791 1.01411.320}1.767(2.505| 3.903
330 L7851 1.021(1.325|1.775|2.517{ 3.922
300 .832)1.072)1.390)1.857(2.636} 4.112
2170 .96311.22611.578}12.118|3.012 | 4.736
240 1.261§1.573]2.04312.770|3.984| 6.395

15
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TABLE III. - DIMENSIONLESS STRESS INTENSITY FACTORS FOR AN

EDGE-NOTCHED RECTANGULAR DOUBLE -CANTILEVER BEAM

SUBJECT TO SPLITTING FORCES

Notch depth to plate width ratio, a/w

Included | Maximum beam
vertex depth to notch
angle, depth ratio, 0.667 | 0.500 | 0.400{0.333(0.250]0.222 10.200
o h/a Kbh
deg o
~-n
Pa 1
360 0.5 8.320 | 6.565 | ----- 6.560 | 6.485| ----- 6.587
1.0 14.829 | 7.202 | ----- 5.81015.798 | ----- 5.798
1.5 22.209 | 9.896 | ----- 6.033|5.695} -—--- 5.6178
2.0 29.623 {13.039 | ----- 6.958 |5.913| ----- 5. 730
350 0.5 8.344 | 6.601 | ----- 6.571 [6.593 [ ----- 6.606
1.0 14,837 | 7.211 | ----- 5.822 [5.815 | -~---- 5. 810
1.5 22.213 | 9.899 | ----- 6.033(5.699 | ----- 5.709
2.0 29.630 [ 13.038 | ----- 6.952 |5.910 | ----- 5.752
340 0.5 8.360 { 6.619 | ---—- 6.634 [6.611 [6.732 |-----
1.0 14.853 | 7.215 | ----- 5.830 15.812|5.810 [-----
1.5 22.240 | 9.903 | -~---- 6.035 (5.696 [ 5.678 [-----
2.0 29.589 |13.048 | ----- 6.950 [5.906 {5.789 |-----
330 0.5 8.383 | 6.639 | -~--- 6.636 16.641 [ ----—- {-----
1.0 14.904 | 7.230 | ----- 5.835 |5.822 | 5.822 |-----
1.5 22.320 | 9.928 | ----- 6.040 |5.705 689 |-----
2.0 29.775 [13.085 | ----- 6.956 {5.904 787 |-~---
300 1.0 15.509 | 7.426 {----- 5.964 [5.947 | ----- 5.961
.5 23.263 {10.253 | ----- 6.168 |5.781 |5.767 [-----
0 31.040 [13.541 | ----- 7.122 16.071 |5.881 [-----
270 1.5 26.333 |11.300 | 7.741 |6.509 [6.707 | ----- |-----
0 35.139 [14.985 (9.732 |7.654 [6.307 | ----- |-----




point loading. Over the range of geometries analyzed it was indicated that an overde-
termined system of 52 equations and 40 unknowns were sufficient. For the double canti-

lever beam antisymmetrically loaded, it was found that a set of 64 equations and 40 un-
knowns were sufficient.

Numerical Results

Calculations were performed for mode I notch opening for the cases of pure tension,
pure bending, three-point loading, and the double cantilever beam subjected to splitting
forces as shown in figure 2. Calculations were also performed for the antisymmetric
mode I notch opening as shown in figure 3. The required boundary conditions for all
these cases are given in the appendix.

Preliminary results indicated that for pure tension, pure bending, and three-point
loading, increasing the height to width ratio h/w beyond 1.2 (fig. 1) for o > 300° and
beyond 1.4 for 300° > o = 240° produced no change in the stress intensity factor. These
h/w values were therefore used in all the subsequent calculations.

The values of the computed stress intensity factors K. and K]I are given in

1
tables IT to IV for various values of notch angle @ and notch depth ratios a/w. For the

TABLE IV. - DIMENSIONLESS STRESS INTENSITY FACTORS
FOR SINGLE-EDGE NOTCHED SPECIMEN SUBJECTED TO

ANTISYMMETRIC LOADING, MODE II

o |
Included | Maximum beam | Notch depth to plate width ratio, a/w
vertex depth to notch 86 0. 200
angle, depth ratio, 0. 400 0.333 0.2 .
@ h/a Kppoh
deg >
-n
Pa 1
360 0.5 0.353 0.353 0.353 0. 352
. . 500 . 500 . 500 . 500
1.5 .614 .612 ..612 .612
350 0.5 0.186 0.186 0.186 | -----
1.0 . 401 . 401 .401 | -----
1.5 . 543 . 540 .540 | -----
340 1.0 0.278 0.278 0.278 | -----
1.5 . 456 . 454 .454 | -----
330 1.0 0.124 0.124 0.124 | -----
1.5 . 348 . 346 .346 | -----

17



double cantilever beam, the beam depth to notch depth ratio h/a was also varied as

shown in table III.

Typically computed equivalent stress contours and notch displacement values for the
case of three-point loading are shown in figures 5 and 6. Tables and figures are given
in reference 20, covering a much wider range of geometries and loading.

Stress
ratio,
0,l0
160, - - VTB‘F
120 < / \\
. 080 / 4.0 \ 5 o]
j=3
' ?\ 7.0 I 2
0 = ﬂ L J E Notch length
= g . .
= (a) Dimensionless equivalent stress contours for plane 3 5 to plate width ratio,
s stress conditions. 2 \[\ a/v; T
3 g 10 ~
= ™~
. 160 Oe/O 2 . ™~
25 5 5 2]
12 — E — .
0 T S 1 SR O By et SO N
N 0 R ——
080 4.0 -1.00 -.90 -.80 -.70 -.60 -.50 -.40 -.30 -.20 -.10 O
040 A\ Location, x/a
: 5.5
0 éo\w Figure 6. - Three-lpoint tIoading elastic notch tlad%eddis—
- - _ . ’ placements for plane stress conditions. Include
.200 -.160-.120 -.080-.040 0 .040 .080 .120 .160 vertex angle, 300°.

Location, x/a

(b) Dimensionless equivalent stress contours for plane
strain conditions.

Figure 5. - Edge notched beam subjected to three point
loading. Included vertex angle, 300° Poissons ratio,
0.30; notch length to plate width ratio, 0.50; o = 6P/bw.

EXPERIMENTAL MEASUREMENT OF DISPLACEMENT

For comparison with the analytical results, crack surface displacement measure-
ments were made on several v-notched plate specimens of 7075T651 bare aluminum,
which were subjected to three-point bending. Measurement points were symmetrically
located on opposite sides of the edges of the v-notch. Figures 7to 9 shows the equip-
ment used. Numbers appearing in figures 8 and 9 refer to the various components in-
dicated in figure 7. The bend specimens were 9-inches long by 2-inches wide by 1-inch
thick with a span length-to-width ratio of 4 to 1. Nine specimens were tested corres-
ponding to @ values of 330°, 300°, and 270°, and a/w ratios of 0.4, 0.5, and 0.6.
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C-69-3151

Figure 9. - Loading frame, fixtures, and instrumentation. (Numbers
correspond to those in fig.7.)

The modulus of elasticity of the aluminum was taken as 10. 4><106 psi. The equipment
used and the experimental procedures are described in detail in reference 19.

RESULTS AND DISCUSSION

Results are presented in tables II to V. The value of the first term of the truncated
even stress function Re(Az, 1) or Re(A4’ 1) is directly proportional to the stress inten-
sity factor KI or KII' Tables II to IV contain the nondimensional stress intensity
factors for mode I and mode II.

For all mode I cases considered the value of K increased a maximum of 1 percent
in going from « = 360° (crack) to 330°. The square root singularity associated with the
360° crack changed from 0.5000 to 0.4996 in going from 360° (crack) to 330°. One can
conclude on examining the results of table I that as long as @ is 330° or greater the
difference in the stress intensity factor KI from that for a crack is very small. TableIV
contains the nondimensional mode II stress intensity factors. Clearly, small changes in
a produce large changes in K.
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TABLE V. - COMPARISON OF EXPERIMENTALLY
MEASURED AND COMPUTED PLANE STRESS
DIMENSIONLESS DISPLACEMENT VALUES
FOR THREE-POINT BENDING

[Span to width ratio, 4 to 1; ¢ = P/bw. ]

Specimen|Included | Notch depth Dimensionless
number | vertex to plate plane-stress
angle, width ratio, displacements,
a, a/w 2Euy/a.c
deg —- -
L LExperimental Computed
1 330 0.4 8.69 8.172
.5 11. 86 11. 89
l .6 17.71 17.86
300 0.4 8.90 8.92
5 .5 12. 17 12.19
l .6 18.07 18. 37
1 2170 0.4 9. 46 9.55
8 .5 13.01 13.12
9 Hl_,_J .6 | 19.80 | 20.00

Figure 5 contains typical closed contour curves of dimensionless equivalent stress.
One obtains from these contours a semiqualitative look into possible regions of plastic
flow and their shapes. Straight lines have been drawn between points of constant equiva-
lent stress along rays emanating from the crack tip at 10° intervals.

A typical dimensionless plane stress y displacement curve along the notch surface
is plotted in figure 6 for mode I. Displacements were computed along the notch at inter-
vals of one-tenth the relative notch depth r/a. Corresponding plane strain displacements
may be obtained by multiplying the plane stress y displacement by (1 - v2).

Confidence in the correctness of the results obtained by the method of the present
analysis was derived from many comparisons, both with the experimental results ob-
tained herein as well as experimental results of other authors for the crack (a = 3600)
problem. Additional verification was obtained when comparisons were made with solu-
tions to several special cases by other investigators using different analytical techniques.

Table VI shows a comparison of the dimensionless stress intensity factor obtained by
the present method for the cases of pure tension, pure bending, and three-point loading
with experimental results (refs. 13 to 15) and analytical results (ref. 18) of other inves-
tigators. Good agreement is obtained.

Table VII shows a comparison of the plane stress dimensionless displacement ob-
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TABLE VI. -~ COMPARISON OF DIMENSIONLESS STRESS INTENSITY FACTORS FOR SPECIMEN
SUBJECTED TO PURE TENSION, PURE BENDING, AND THREE-POINT LOADING

[Vertex angle, 360°%; Mode I (see fig. 2). ]

Type of data | Source Notch depth to plate width ratio, a/w

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Pure tension; dimensionless stress intensity factor, K%wbz/P2

Experimental | Ref. 15 0.556 | 0.816| 1.180) 1.735]| 2.571| 3.775| 5.436 | 7.641 10. 477

Experimental | Ref. 13 .65 1.00 1.40 1.97 2.80 4.20 6.18 8. 90 12.50

Collocation Ref. 5 . 445 . 758 1.180 1.768 1 2.603 3.813 5.596 8.276 12. 399

Analytical Ref. 18 . 443 . 747 1.164 1.751 2.592 3.813| 5.606 8.284 12. 363
Pure bending; dimensionless stress intensity factor, K?b2w3/M2;

Collocation Ref. 8 12.4 18.5 25.3 33.2 42.8 55.2 71.4 92.7 123.0

Experimental | Ref. 14 11.8 17.4 24,2 32.15 41.9 53.9 68.6 88.9 118.0

Analytical Ref. 18 12. 37 18.28 | 24.94 32.95 42.85 55.57 72.14 94.5 125.5

Three-point loading; dimensionless stress intensity factor, K%bZWB/MZ;
span to width ratio, 4/1

Collocation This work{ -=---~ | -==--- 21.18 | ===--- 36.89 [ ------ 62.50 | ~----- 112. 34
Experimental L B I 20.26 | -—---- 37.62 | -~en-- 61.75 | w----- 110. 77

a'Unpublished data obtained by Jones, Bubsey, and Brown of Lewis.

TABLE VII. - COMPARISON OF PLANE-STRESS DIMENSIONLESS DISPLACEMENT ACROSS NOTCH SURFACES
FOR THE THREE-POINT LOADING SPECIMEN AND RECTANGULAR DOUBLE-CANTILEVER
BEAM SUBJECT TO SPLITTING FORCES

[ Vertex angle. 360°. see fig. 2. |

Type of data Source Gage location [Plate width Notch depth to plate width ratio, a/w
T to beam —‘( o B T
X/ W y/w height 0.20 | 0.30 0.40 0.50 0.60 0. 70 0. 80
ratio.
w/h

Three-point loading; dimensionless displacement, 2Ebuyw/6M

Collocation This work -a/w |0 5/6 1.159 [ 2.075 3.497| 5.942 | 10.672 | 21.446| 51.370
Collocation This work -a/w +.10 5/6 1.166 | 2.077 3.497 5.943 | 10.672 | 21.445( 51.399
Experimental (a) -a/w +.10 --= 1.176 | 2.124 3.556 | 6.032 | 10.29 21.09 51.53

Rectangular double-cantilever beam subject to gplitting forces; dimensionless displacement, 2Ebuy/P

Collocation This work | -(a/w+1/4)|+0 5/3 | eaae- 23.47 | 34.73 | 50.13 |87.18 |[163.39 |395.7
Experimental () -(a/w+1/4}| +0 5/3 | ~---- 24.21 35.44 | 53.93 | 88.83 |161.14 |380.0

aUnpublished data obtained by Jones, Bubsey, and Brown of Lewis.
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TABLE VIII. - TABLE OF FIRST

EIGENVALUES FOR MODES 1

AND II FOR VARIOUS

INCLUDED VERTEX

ANGLES
Included vertex| First eigenvalues, 4
angle,
deg Mode I | Mode II
360 1. 500000 | 1. 500000
350 1. 500053 |1.529355
340 1.500426 | 1. 562007
330 1.501453(1.598192
300 1.512221 | ---~----
270 1.544484 | ~--m-umm
240 1.615731 | ~-------

tained by the technique presented herein with that obtained experimentally (unpublished
data obtained by Jones, Bubsey, and Brown of Lewis) for the cases of three-point bend-
ing and rectangular double-cantilever beam subject to splitting forces. For the rec-
tangular double-cantilever case the displacements were extrapolated linearly to the
specimen edge [x = -(a + w/4), y = 0]. Once again good agreement is obtained. A more
detailed comparison of the analytical and experimental results is given in reference 19.
For included vertex angles @ less than 3600, no experimental or analytical data
have heretofore been available. Experiments, as previously described were therefore
made for a three-point bend specimen, and the results were compared with the analysis
presented herein for the case of plane stress and are shown in table V. Results are
given for « values of 3300, 3000, and 270° and notch depth to plate width ratios a/w
of 0.4, 0.5, and 0.6. Excellent agreement is obtained over the range of a/w ratios.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 1, 1970,
731-25.
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APPENDIX - STRESS FUNCTION AND STRESS FUNCTION DERIVATIVE
ALONG THE BOUNDARY OF v-NOTCH SPECIMEN

For pure tension as shown in figure 2

Along AB
X:O a_x_':o
oX
Along BC
2 2
._)&z_l__ x_+a_x+§'_. .a_Xzo
P bw\2 2 oy
Along CD

For pure bending as shown in figure 2

Along AB
x=0 X-p
ox
Along BC
3 2 2 3 2 2
%_-iz_ ia.'_. g_x_-;.?‘}iq-.x__ +_6_. x_+ax+é'._ %:0
M W3 6 2 2 6 W2 2 2 ay
Along CD
bx_ 1 3X_-g
M 15):4
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For three-point loading as shown in figure 2

Along AB
x=0 X=o
ox
Along BC
X 6 [s x3 X Xa a” fw a
A= _-h) —_+_(W-2a)+_(w—a)+—-<—-_>
P bw3 2 6 2\2 3
b ax _ -6 x3 X xXa a“ /fw a
— == 1-_+2_(w-2a)+=(w a)+__<_—_>
P oy W3 6 2 2 3
Along CC'
X_8-2y &_g
P 4b ox
Along C'D
2
vy -y,
L:_l_ s-2y_—o__ a_X:O
P 4b Yo 15):4

For the rectangular specimen subject to splitting forces as shown in figure 2

Along AB

X - e[(y+9) sin y sin 6 + sin2 v sin(y + 9)
P b 2y + sin 2y

N (6 + y)cos y cos 6 - cos?f v sin(y + 9)}
2y - sin 2y

+ € [sin 26 - 26 cosZy_1>
2b \2y cos 2y - sin 2y



where

___271-Ot
4

Y

h+atang
e= 2
tan 2y

p:\/(h-rsin(p)2+(e+a+rcosq))2

h - rsin @ )

6 =9 -tan"1
e+a+7rcos @

and the stress function derivatives is obtained from

olo
QD [
><l><
Il
Hio
<4
>
vre |

where ¥ is a unit vector normal to boundary.

Along BC
X_(x+a X =g
P b ay
Along CD
X_-w bax_y
P b P ox

For the Antisymmetric loading as shown in figure 3

Along AB
y +atan =
X = 2 IX - o
p 2b (h + a tan g) ox
2
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Along BC

h+atan 2
X-_ 2 box_4
P 2b P oy
Along CD
(h-atanf“.)
X1 Y3 2 +y<3atan3+h) a_X:o
P 4bh h2 2 ox

For the longitudinal shear (mode II) as shown in figure 4 the stress function require-
ments along the specimen boundary is as follows

Along AB
X= Tyrq (r sin ¢ + a tan %)
Along BC
X = szl<h + a tan E)
Along CD

o
21~ sz2) +t Txz12 tan —

X =Ty ol sin ¢ + h(r 5

X

The detailed derivation of these conditions is given in reference 19.
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